Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: (right/left) dual
Definition: (right dual) For every right ideal $B$, $r.ann(l.ann(B))=B$
Reference(s):
C. Hajarnavis and N. Norton. On dual rings and their modules. (1985) @ .
I. Kaplansky. Dual rings. (1948) @ .
W. K. Nicholson and M. Yousif. On dual rings. (1999) @ .
Metaproperties:
This property
does not
have the following metaproperties
passes to subrings (Counterexample:
$R_{ 6 }$
is a subring of
$R_{ 101 }$
)
passes to quotient rings (Counterexample:
$R_{ 164 }$
is a homomorphic image of
$R_{ 139 }$
)
Rings
left
Name
right
$\mathbb Q+FM_\omega(\mathbb Q)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q\langle x,y \rangle/(xy-1)$: the Toeplitz-Jacobson algebra
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$RCFM_\omega(\mathbb Q)$
$T_\omega(\mathbb Q)$
Bass's right-not-left perfect ring
Berberian's incompressible Baer ring
Bergman's exchange ring that isn't clean
Bergman's non-unit-regular subring
Bergman's primitive finite uniform dimension ring
Bergman's ring with IBN
Bergman's ring without IBN
Bergman's unit-regular ring
Camillo and Nielsen's McCoy ring
Chase's left-not-right semihereditary ring
Eventually constant sequences in $\mathbb Z$
Full linear ring of a countable dimensional right vector space
Grassmann algebra $\bigwedge (V)$, $\dim(V)=\aleph_0$
Kaplansky's right-not-left hereditary ring
Leavitt path algebra of an infinite bouquet of circles
Michler & Villamayor's right-not-left V ring
Nielsen's semicommutative ring that isn't McCoy
O'Meara's infinite matrix algebra
Puninski's triangular serial ring
Reversible non-symmetric ring
Right-not-left simple injective ring
Semicommutative $R$ such that $R[x]$ is not semicommutative
Small's right hereditary, not-left semihereditary ring
Šter's clean ring with non-clean corner rings
Šter's counterexample showing "clean" is not Morita invariant
$2$-adic integers: $\mathbb Z_2$
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb Q\langle a,b\rangle/(a^2)$
$\mathbb Q\langle x, y\rangle$
$\mathbb R[[x]]$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z$: the ring of integers
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\mathbb Z\langle x,y\rangle/(y^2, yx)$
$\mathbb Z\langle x_0, x_1,x_2,\ldots\rangle$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim T_{2^n}(\Bbb Q)$
$\varinjlim \mathbb Q^{2^n}$
$\varinjlim M_{2^n}(\mathbb Q)$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$F_2[x,y]/(x,y)^2$
$k[[x,y]]/(x^2,xy)$
$k[x,x^{-1};\sigma]$
$T_n(\mathbb Q)$: the upper triangular matrix ring over $\mathbb Q$
$T_n(F_2)$
$T_n(F_q)$
10-adic numbers
2-dimensional uniserial domain
Akizuki's counterexample
Algebra of differential operators on the line (1st Weyl algebra)
Algebraic integers
Bergman's example showing that "compressible" is not Morita invariant
Bergman's right-not-left primitive ring
catenary, not universally catenary
Cohn's non-IBN domain
Cohn's right-not-left free ideal ring
Cohn's Schreier domain that isn't GCD
Countably infinite boolean ring
Cozzens simple, left principal, right non-Noetherian domain
Cozzens' simple V-domain
Custom Krull dimension valuation ring
DVR that is not N-2
Facchini's torch ring
Faith-Menal counterexample
Finitely cogenerated, not semilocal ring
Goodearl's simple self-injective operator algebra
Goodearl's simple self-injective von Neumann regular ring
Grams' atomic domain which doesn't satisfy ACCP
Henselization of $\Bbb Z_{(2)}$
Hochster's connected, nondomain, locally-domain ring
Hurwitz quaternions
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
Kolchin's simple V-domain
Left-not-right Noetherian domain
Left-not-right uniserial domain
Lipschitz quaternions
Local right-not-left Kasch ring
Malcev's nonembeddable domain
McGovern's commutative Zorn ring that isn't clean
Mori but not Krull domain
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Nagata's normal ring that is not analytically normal
Nielsen's right UGP, not left UGP ring
Noetherian domain that is not N-1
Noetherian ring that is not Grothendieck and not Nagata
non-$h$-local domain
Non-Artinian simple ring
Non-symmetric $2$-primal ring
Nonlocal endomorphism ring of a uniserial module
Osofsky's $32$ element ring
Osofsky's Type I ring
Page's left-not-right FPF ring
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Progression free polynomial ring
Quasi-continuous ring that is not Ikeda-Nakayama
Ram's Ore extension ring
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Right-not-left ACC on annihilators triangular ring
Right-not-left Artinian triangular ring
Right-not-left coherent ring
Right-not-left Kasch ring
Right-not-left Noetherian triangular ring
Right-not-left nonsingular ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Ring of holomorphic functions on $\mathbb C$
Samuel's UFD having a non-UFD power series ring
Shepherdson's domain that is not stably finite
Simple, Noetherian ring with zero divisors and trivial idempotents
Simple, non-Artinian, von Neumann regular ring
Square of a torch ring
Trivial extension torch ring
Varadarajan's left-not-right coHopfian ring
$\mathbb C$: the field of complex numbers
$\mathbb H$: Hamilton's quaternions
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb R$: the field of real numbers
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[X]/(X^2,8)$
$^\ast \mathbb R$: the field of hyperreal numbers
$C\ell_{2,1}(\mathbb R)$: the geometric algebra of Minkowski 3-space
$F_2[\mathcal Q_8]$
$F_2[S_4]$
$F_p(x)$
$k[x;\sigma]/(x^2)$ (Artinian)
$k[x;\sigma]/(x^2)$ (not right Artinian)
$M_n(\mathbb Q)$
$M_n(F_2)$
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic closure of $F_2$
Basic ring of Nakayama's QF ring
Clark's uniserial ring
Division algebra with no anti-automorphism
Division ring with an antihomomorphism but no involution
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Interval monoid ring
Left-not-right pseudo-Frobenius ring
Nakayama's quasi-Frobenius ring that isn't Frobenius
Pseudo-Frobenius, not quasi-Frobenius ring
Rational quaternions
Legend
= has the property
= does not have the property
= information not in database